
Ryszard Andruszkiewicz, Henryk Chmara and Edward Borowski

Department of Pharmaceutical Technology and Biochemistry, Technical University of Gdańsk, 80-952 Gdańsk, Poland

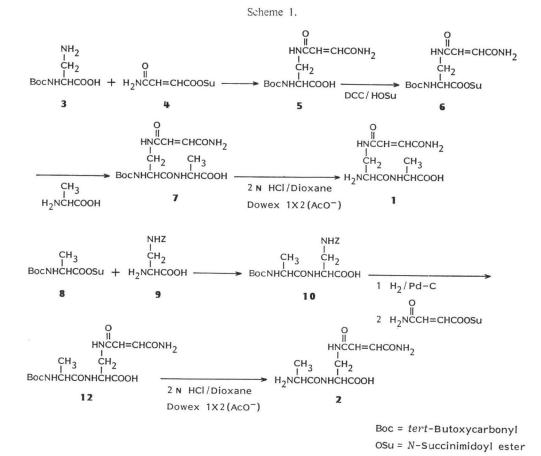
(Received for publication June 22, 1984)

The antibiotic A 19009 *i.e.* N-(N^3 -fumaramoyl-L-2,3-diaminopropanoyl)-L-alanine (1) and its structural isomer (2) were synthesized and their antifungal activity *in vitro* against *Candida albicans* has been evaluated. The results demonstrate that these peptides inhibit the growth of *C. albicans* with minimum inhibitory concentrations ranging from 1.8 to 31 μ g/ml.

Antibiotic A 19009 (1), originally isolated from a strain *Streptomyces collinus* Lindenbein¹⁾, has been reported to be active against some fungi. However, no biological data concerning anticandidal activity have been presented.

Recently, VAN DER BAAN and coworkers²⁾ have synthesized the antibiotic A 19009 (1) and its structural isomer (2) but little biological activity data were provided. According to their observations, dipeptide 1 showed a distinct activity against *Trichomonas vaginalis*, in contrast to compound 2 which had a very low activity.

In this paper we wish to report the anticandidal activity of the both compounds **1** and **2**.


The general procedure used for the preparation of **1** and **2** is outlined in Scheme 1. N^2 -tert-Butoxycarbonyl-L-2, 3-diaminopropanoic acid (**3**)³ was acylated with N-succinimidoyl ester of fumaramic acid (**4**) in a H₂O - MeOH solution to afford N^2 -tert-butoxycarbonyl, N^3 -fumaramoyl-L-2, 3-diaminopropanoic acid (**5**) in 82% yield, which was converted to its N-succinimidoyl active ester (6) with the aid of dicyclohexylcarbodiimide (DCC) and *N*-hydroxysuccinimide (HOSu)⁴⁾. Coupling of this active ester 6 with L-alanine yielded the protected dipeptide 7 in 95% yield. Deprotection of the terminal amino function by means of 2 N HCl in dioxane, followed by purification using Dowex 1X2 (AcO⁻) anion exchange resin, furnished the antibiotic A 19009 (1) in 79% yield.

The dipeptide 2 was prepared by the similar reactions sequence. In this approach, N-tertbutoxycarbonyl-L-alanine N-succinimidoyl ester $(8)^{4}$ was coupled with N³-benzyloxycarbonyl-L-2,3-diaminopropanoic acid (9)⁵⁾ to give N^2 -(Ntert - butoxycarbonyl-L-alanyl)-N3- benzyloxycarbonyl-L-2,3-diaminopropanoic acid (10) in 96% yield. The resulting dipeptide 10 was hydrogenolyzed in the presence of 10% Pd-C catalyst, then acylated with N-succinimidoyl ester of fumaramic acid (4) to obtain the protected dipeptide 12 in 80% yield. Removal of the tertbutoxycarbonyl protecting group in 12 and purification of the final compound 2 was accomplished in the same way as described for the preparation of dipeptide 1. Compound 2 was obtained in 84% yield.

Both dipeptides, with N^3 -fumaramoyl-L-2,3diaminopropanoyl residue in either the aminoterminal (1) or the carboxy-terminal position (2) show substantial antifungal activity against seven selected strains of *C. albicans* (Table 1). Antibiotic A 19009 (1) exhibited stronger anticandidal activity than its isomer (2) against all *C. albicans* strains tested. However it is not clear why peptide 1 displayed stronger activity than 2. We assume that both peptides are transported into the cells by the same dipeptide permeases, but with different rates of peptide transport.

Table 1. *In vitro* activity of antibiotic A 19009 (1) and its structural isomer (2).

	MIC (µg/ml)			
Test organism	Antibiotic A 19009 (1)	Isomer of A 19009 (2)		
Candida albicans SR 30	7.5	15		
C. albicans AMB 25	3.75	7.5		
C. albicans ATCC 26278	1.8	3.75		
C. albicans 884	1.8	3.75		
C. albicans 886	1.8	3.75		
C. albicans clinical strain	1.8	31		
C. albicans 4477	1.8	15		

Experimental

Melting points are uncorrected. ¹H NMR spectra were recorded at 80 MHz with a Tesla BS-487 spectrometer with hexamethyldisiloxane as an internal standard. Optical rotations were measured with a Hilger Watts (London) polarimeter. Purity of the synthetic compounds was confirmed by thin-layer chromatography using Kieselgel 60 F_{254} plates (Merck).

<u>N-Succinimidoyl Ester of Fumaramic Acid (4)</u> Fumaramic acid^{®)} (0.575 g, 5 mmol) and *N*hydroxysuccinimide (0.575 g, 5 mmol) were dissolved in dry DMF (15 ml), cooled to 5°C and DCC (1.13 g, 5.5 mmol) was added. After 20 hours the urea was filtered off, and the filtrate evaporated to dryness leaving a crystalline residue, which was crystallized from THF - hexane to yield 4 (0.96 g, 91% yield), mp 164~166°C (dec). Anal Calcd for $C_{s}H_{8}N_{2}O_{5}$:

C 45.28, H 3.80, N 13.20. Found: C 45.15, H 3.75, N 13.05. <u>N²-tert-Butoxycarbonyl-N³-fumaramoyl-L-2,3-</u> diaminopropanoic Acid (5)

Z = Benzyloxycarbonyl

To a solution of N^3 -tert-butoxycarbonyl-L-2,3diaminopropanoic acid (**3**, 0.612 g, 3 mmol) and Et₃N (0.4 ml, 3 mmol) in H₂O (5 ml) and MeOH (10 ml), active ester **4** (0.636 g, 3 mmol) in MeOH (5 ml) was added with stirring at 0°C. After 4 hours, the solvents were evaporated to a small volume (5 ml) and the residue was passed through a column of Dowex 1X2 (AcO⁻). The column was washed with 40% MeOH, then 1 N AcOH in 40% MeOH. Fractions containing **5** were collected, evaporated to dryness *in vacuo*, and crystallized from MeOH - diethyl ether yielding **5** (0.74 g, 82% yield) with mp 240~242°C (dec).

Anal Calcd for $C_{12}H_{19}N_3O_6$:

	C	47.8	3, H 6.36, N 13.95.
Found:	C	47.5	8, H 6.32, N 13.82.
N-Succinimidoyl	Ester	of	N ² -tert-Butoxycar-
bonyl - N ³ - fumaram	noyl-L	-2,3	B-diaminopropanoic

Acid (6)

Protected amino acid **5** (0.602 g, 2 mmol) and *N*-hydroxysuccinimide (0.23 g, 2 mmol) were dissolved in dry DMF (10 ml) at 0°C, and DCC (0.453 g, 2 mmol) were dissolved in dry DMF (10 ml) at 0°C, and DCC (0.453 g, 2.2 mmol) was added with stirring. After 24 hours, the precipitate was filtered off, the filtrate evaporated to dryness *in vacuo* and the residue triturated with EtOAc to afford **6** (0.73 g, 91 % yield) as an amorphous powder.

Anal Calcd for C₁₈H₂₂N₄O₈: C 48.23, H 5.57, N 14.06. Found: C 48.02, H 5.48, N 13.85.

N-(N²-tert-Butoxycarbonyl-N³-fumaramoyl-L-

2,3-diaminopropanoyl)-L-alanine (7)

To a solution of L-alanine (0.107 g, 1.2 mmol) and Et₃N (0.16 ml, 1.2 mmol) in H₂O (5 ml) and MeOH (5 ml), **6** (0.438 g, 1.1 mmol) was added at 0°C. After stirring overnight the reaction mixture was concentrated to a volume of 5 ml and passed through a column of Dowex 1X2 (AcO⁻). The peptide 7 was purified as described for the corresponding peptide **5** to give 7 (0.39 g, 95% yield), mp $255 \sim 258^{\circ}$ C (dec).

Anal Calcd for $C_{15}H_{24}N_4O_7$: C 48.37, H 6.49, N 15.05. Found: C 48.19, H 6.42, N 14.85.

<u>N-(N³-Fumaramoyl-L-2,3-diaminopropanoyl)</u>-L-alanine (1)

Peptide 7 (0.25 g, 0.67 mmol) was treated with 2 N HCl in dry dioxane (10 ml) for 2 hours at 0°C. Evaporation to dryness *in vacuo* and trituration with diethyl ether gave **1** as its hydrochloride (0.21 g, 97% yield) which was dissolved in a small volume of H₂O (3 ml) passed through a column of Dowex 1X2 (AcO⁻) and eluted with H₂O. Fractions containing **1** were collected, evaporated to dryness and crystallized from H₂O - MeOH to give 1 (0.144 g, 79% yield), mp 288 ~ 292°C (dec), $[\alpha]_{15}^{35}$ -6.7° (*c* 1.0, H₂O), ¹H NMR (D₂O) δ 1.20 (d, 3H, CH₃), 3.40~360 (m, 2H, CH₂), 3.90~ 4.10 (m, 2H, 2×CH), 6.65 (s, 2H, CH=CH). *Anal* Calcd for C₁₀H₁₈N₄O₅:

	C 44.11, H 5.92, N 20.58.
Found:	C 43.95, H 5.82, N 20.45.
M2 (tout Dutowno)	rhonyl I alanyl) N ³ hanzyl

N^2 -	(tert-]	Butoxycar	bonyl-L-	alanyl)-N	³ -benzyl-

oxycarbonyl-L-2,3-diaminopropanoic Acid (10)

To a solution of N° -benzyloxycarbonyl-L-2,3diaminopropanoic acid (9, 0.476 g, 2 mmol) and NaHCO₃ (0.168 g, 2 mmol) in H₂O (5 ml), *Ntert*- butoxycarbonyl-L-alanine *N*- succinimidoyl ester (8, 0.577 g, 2 mmol) dissolved in MeOH (5 ml) was added with stirring at 0°C. After being stirred overnight at room temp the solvent was removed *in vacuo* and the residue was dissolved in a small amount of H₂O (5 ml). The H₂O layer was acidified with 10% citric acid and extracted with EtOAc (50 ml). The EtOAc solution was washed with H₂O, dried over MgSO₄ and evaporated *in vacuo*. The residue was crystallized from EtOAc-hexane to yield 10 (0.785 g, 96% yield), mp 72~74°C.

Anal Calcd for C₁₉H₉₇N₃O₇:

Calca IOI	C19112714307.				
	C 55.73,	Η	6.64,	Ν	10.26
Found:	C 55.52,	Η	6.52,	N	10.14

 $\frac{N^2 - (tert - Butoxycarbonyl - L - alanyl) - L - 2,3-di-aminopropanoic Acid (11)$

A solution of 10 (0.614 g, 1.5 mmol) in MeOH (20 ml) was stirred with Pd-C 10% (50 mg) and hydrogenated at atmospheric pressure for 2 hours. The catalyst was filtered off, the filtrate evaporated *in vacuo* left a colorless solid, which was crystallized from MeOH - diethyl ether yielding 11 (0.43 g, 97% yield), mp 168 ~ 170°C (dec).

 $\begin{array}{c} \textit{Anal Calcd for } C_{11}H_{21}N_3O_5\colon \\ & C \ 47.98, \ H \ 7.68, \ N \ 15.26. \\ & Found\colon \ C \ 47.65, \ H \ 7.70, \ N \ 15.20. \end{array}$

 N^2 -(*tert*-Butoxycarbonyl-L-alanyl)- N^3 -fumaramoyl-L-2,3-diaminopropanoic Acid (12)

Peptide 11 (0.375 g, 1.36 mmol) was dissolved in H_2O (10 ml) with heating. The solution was cooled to room temp and Et_3N (0.2 ml, 1.5 mmol) was added. Then *N*-succinimidoyl ester of fumaramic acid (0.29 g, 1.5 mmol) in MeOH (5 ml) was added with stirring and the solution was left to stand for 4 hours. The reaction mixture was concentrated to a volume of 5 ml and passed through a column of Dowex 1X2 (AcO⁻). Compound 12 was purified as described for compound 5, evaporated to dryness yielding 12 as an amorphous powder (0.401 g, 80% yield).

Anal Calcd for C15	$H_{24}N_4O_7$:
	C 48.37, H 6.49, N 15.05.
Found:	C 48.22, H 6.41, N 14.97.

 $\frac{N^2 - L - A \ln yl - N^3 - fumaramoyl - L - 2, 3 - diamino-propanoic Acid (2)}{2}$

From the protected dipeptide 12 (0.3 g, 0.8

mmol), compound **2** (0.185 g, 84% yield) was obtained in the same way as described for **1**, mp 292~295°C, $[\alpha]_{D}^{25}$ -3.7° (*c* 0.25, H₂O), ¹H NMR (D₂O) δ 1.25 (d, 3H, CH₃), 3.30~3.60 (m, 2H, CH₂), 3.80 (q, 1H, CH), 4.15 (m, 1H, CH), 6.67 (s, 2H, CH=CH).

Anal	Calcd	for	$C_{10}H_{16}N_4O_5$:	
------	-------	-----	------------------------	--

	C 44.11, H 5.92, N 20.58.	
Found:	C 44.01, H 5.84, N 20.42.	

Biological Assays

The minimum inhibitory concentrations (MIC) of antibiotic A 19009 (1) and its structural isomer (2) were determined on MA medium for strains of *C. albicans* using the previously described method^{τ}).

Acknowledgment

The authors acknowledge financial support of these studies by the Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw.

References

1) MOLLOY, B. B.; D. H. LIVELY, R. M. GALE, M.

GORMAN, L. D. BOECK, C. E. HIGGENS, R. E. KASTNER, L. L. HUCKSTEP & N. NEUSS: A new dipeptide antibiotic from *Streptomyces collinus*, Lindenbein. J. Antibiotics 25: 137~140, 1972

- VAN DER BAAN, J. L.; J. W. F. K. BARNICK & F. BICKELHAUPT: Antibiotic A 19009 structural investigation and synthesis. J. Antibiotics 36: 784~792, 1983
- WAKI, M.; Y. KITAJIMA & N. IZUMIYA: A facile synthesis of N²-protected L-2,3-diaminopropanoic acid. Synthesis 1981: 266~267, 1981
- ANDERSON, G. W.; J. E. ZIMMERMAN & F. M. CALLAHAN: The use of esters of N-hydroxysuccinimide in peptide synthesis. J. Am. Chem. Soc. 86: 1839~1842, 1964
- 5) GRZYBOWSKA, J.; R. ANDRUSZKIEWICZ & H. WOJCIECHOWSKA: Unambiguous synthesis of N³-benzyloxycarbonyl-(S)-2,3-diaminopropionic acid. Pol. J. Chem. 53: 935~936, 1979
- 6) TALLEY, A. E.; TH. J. FITZPATRICK & W. L. PORTER: Formation of fumaramic acid from asparagine in phosphate buffer. J. Am. Chem. Soc. 81: 174~175, 1959
- MILEWSKI, S.; H. CHMARA & E. BOROWSKI: Growth inhibitory effect of antibiotic tetaine on yeast and mycelial forms of *Candida albicans*. Arch. Microbiol. 135: 130~136, 1983